Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
BMB Rep ; 53(12): 634-639, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33050986

RESUMO

In prostate cancer, the androgen receptor (AR) transcription factor is a major regulator of cell proliferation and metastasis. To identify new AR regulators, we focused on Mixed lineage leukemia 5 (MLL5), a histone-regulating enzyme, because significantly higher MLL5 expression was detected in prostate cancer tissues than in matching normal tissues. When we expressed shRNAs targeting MLL5 gene in prostate cancer cell line, the growth rate and AR activity were reduced compared to those in control cells, and migration ability of the knockdown cells was reduced significantly. To determine the molecular mechanisms of MLL5 on AR activity, we proved that AR physically interacted with MLL5 and other co-factors, including SET-1 and HCF-1, using an immunoprecipitation method. The chromatin immunoprecipitation analysis showed reduced binding of MLL5, co-factors, and AR enzymes to AR target gene promoters in MLL5 shRNA-expressing cells. Histone H3K4 methylation on the AR target gene promoters was reduced, and H3K9 methylation at the same site was increased in MLL5 knockdown cells. Finally, xenograft tumor formation revealed that reduction of MLL5 in prostate cancer cells retarded tumor growth. Our results thus demonstrate the important role of MLL5 as a new epigenetic regulator of AR in prostate cancer. [BMB Reports 2020; 53(12): 634-639].


Assuntos
Proteínas de Ligação a DNA/metabolismo , Histona-Lisina N-Metiltransferase/metabolismo , Fator C1 de Célula Hospedeira/metabolismo , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Proteínas de Ligação a DNA/genética , Regulação Neoplásica da Expressão Gênica/genética , Histona-Lisina N-Metiltransferase/fisiologia , Histonas/metabolismo , Fator C1 de Célula Hospedeira/fisiologia , Humanos , Masculino , Metilação , Regiões Promotoras Genéticas/genética , Neoplasias da Próstata/metabolismo , Processamento de Proteína Pós-Traducional/genética , Receptores Androgênicos/metabolismo , Receptores Androgênicos/fisiologia , Transdução de Sinais/genética , Fatores de Transcrição/metabolismo
2.
Nucleic Acids Res ; 47(11): 5792-5808, 2019 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-31049581

RESUMO

HCF-2 is a member of the host-cell-factor protein family, which arose in early vertebrate evolution as a result of gene duplication. Whereas its paralog, HCF-1, is known to act as a versatile chromatin-associated protein required for cell proliferation and differentiation, much less is known about HCF-2. Here, we show that HCF-2 is broadly present in human and mouse cells, and possesses activities distinct from HCF-1. Unlike HCF-1, which is excluded from nucleoli, HCF-2 is nucleolar-an activity conferred by one and a half C-terminal Fibronectin type 3 repeats and inhibited by the HCF-1 nuclear localization signal. Elevated HCF-2 synthesis in HEK-293 cells results in phenotypes reminiscent of HCF-1-depleted cells, including inhibition of cell proliferation and mitotic defects. Furthermore, increased HCF-2 levels in HEK-293 cells lead to inhibition of cell proliferation and metabolism gene-expression programs with parallel activation of differentiation and morphogenesis gene-expression programs. Thus, the HCF ancestor appears to have evolved into a small two-member protein family possessing contrasting nuclear versus nucleolar localization, and cell proliferation and differentiation functions.


Assuntos
Perfilação da Expressão Gênica , Fator C1 de Célula Hospedeira/fisiologia , Fatores de Transcrição/fisiologia , Animais , Linhagem Celular , Linhagem Celular Tumoral , Nucléolo Celular , Proliferação de Células , Cromatina/química , Fibroblastos/metabolismo , Duplicação Gênica , Células HEK293 , Células HeLa , Fator C1 de Célula Hospedeira/metabolismo , Humanos , Células Jurkat , Células MCF-7 , Camundongos , Mitose , Sinais de Localização Nuclear/metabolismo , Fenótipo , Plasmídeos/metabolismo , RNA Interferente Pequeno/metabolismo , Fatores de Transcrição/metabolismo
3.
Circulation ; 131(14): 1260-8, 2015 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-25663381

RESUMO

BACKGROUND: Idiopathic pulmonary arterial hypertension (IPAH) is a cardiopulmonary disease characterized by cellular proliferation and vascular remodeling. A more recently recognized characteristic of the disease is the dysregulation of glucose metabolism. The primary link between altered glucose metabolism and cell proliferation in IPAH has not been elucidated. We aimed to determine the relationship between glucose metabolism and smooth muscle cell proliferation in IPAH. METHODS AND RESULTS: Human IPAH and control patient lung tissues and pulmonary artery smooth muscle cells (PASMCs) were used to analyze a specific pathway of glucose metabolism, the hexosamine biosynthetic pathway. We measured the levels of O-linked ß-N-acetylglucosamine modification, O-linked ß-N-acetylglucosamine transferase (OGT), and O-linked ß-N-acetylglucosamine hydrolase in control and IPAH cells and tissues. Our data suggest that the activation of the hexosamine biosynthetic pathway directly increased OGT levels and activity, triggering changes in glycosylation and PASMC proliferation. Partial knockdown of OGT in IPAH PASMCs resulted in reduced global O-linked ß-N-acetylglucosamine modification levels and abrogated PASMC proliferation. The increased proliferation observed in IPAH PASMCs was directly impacted by proteolytic activation of the cell cycle regulator, host cell factor-1. CONCLUSIONS: Our data demonstrate that hexosamine biosynthetic pathway flux is increased in IPAH and drives OGT-facilitated PASMC proliferation through specific proteolysis and direct activation of host cell factor-1. These findings establish a novel regulatory role for OGT in IPAH, shed a new light on our understanding of the disease pathobiology, and provide opportunities to design novel therapeutic strategies for IPAH.


Assuntos
Hipertensão Pulmonar Primária Familiar/enzimologia , N-Acetilglucosaminiltransferases/fisiologia , Adulto , Aloxano/farmacologia , Divisão Celular , Células Cultivadas , Progressão da Doença , Hipertensão Pulmonar Primária Familiar/mortalidade , Hipertensão Pulmonar Primária Familiar/patologia , Hipertensão Pulmonar Primária Familiar/cirurgia , Feminino , Glucose/metabolismo , Glicosilação , Hexosaminas/biossíntese , Hospitalização/estatística & dados numéricos , Fator C1 de Célula Hospedeira/fisiologia , Humanos , Transplante de Pulmão/estatística & dados numéricos , Masculino , Pessoa de Meia-Idade , Músculo Liso Vascular/patologia , Miócitos de Músculo Liso/enzimologia , Miócitos de Músculo Liso/patologia , N-Acetilglucosaminiltransferases/antagonistas & inibidores , Processamento de Proteína Pós-Traducional , Artéria Pulmonar/patologia , Resultado do Tratamento , Adulto Jovem
4.
J Gerontol A Biol Sci Med Sci ; 70(7): 827-38, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25073462

RESUMO

Recent studies suggest that royal jelly (RJ) and its related substances may have antiaging properties. However, the molecular mechanisms underlying the beneficial effects remain elusive. We report that the effects of RJ and enzyme-treated RJ (eRJ) on life span and health span in Caenorhabditis elegans (C elegans) are modulated by the sophisticated interplays of DAF-16, SIR-2.1, HCF-1, and 14-3-3 proteins. Dietary supplementation with RJ or eRJ increased C. elegans life span in a dose-dependent manner. The RJ and eRJ consumption increased the tolerance of C elegans to oxidative stress, ultraviolet irradiation, and heat shock stress. Our genetic analyses showed that RJ/eRJ-mediated life-span extension requires insulin/IGF-1 signaling and the activities of DAF-16, SIR-2.1, HCF-1, and FTT-2, a 14-3-3 protein. Earlier studies reported that DAF-16/FOXO, SIR-2.1/SIRT1, FTT-2, and HCF-1 have extensive interplays in worms and mammals. Our present findings suggest that RJ/eRJ-mediated promotion of longevity and stress resistance in C elegans is dependent on these conserved interplays. From an evolutionary point of view, this study not only provides new insights into the molecular mechanisms of RJ's action on health span promotion in C elegans, but also has imperative implications in using RJ/eRJ as nutraceuticals to delay aging and age-related disorders.


Assuntos
Proteínas 14-3-3/fisiologia , Proteínas de Caenorhabditis elegans/fisiologia , Ácidos Graxos/farmacologia , Fatores de Transcrição Forkhead/fisiologia , Fator C1 de Célula Hospedeira/fisiologia , Longevidade/efeitos dos fármacos , Sirtuínas/fisiologia , Animais , Caenorhabditis elegans , Estresse Fisiológico/efeitos dos fármacos
5.
Dev Biol ; 396(1): 94-106, 2014 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-25281006

RESUMO

Mutations in HCFC1 (MIM300019), have been recently associated with cblX (MIM309541), an X-linked, recessive disorder characterized by multiple congenital anomalies including craniofacial abnormalities. HCFC1 is a transcriptional co-regulator that modulates the expression of numerous downstream target genes including MMACHC, but it is not clear how these HCFC1 targets play a role in the clinical manifestations of cblX. To begin to elucidate the mechanism by which HCFC1 modulates disease phenotypes, we have carried out loss of function analyses in the developing zebrafish. Of the two HCFC1 orthologs in zebrafish, hcfc1a and hcfc1b, the loss of hcfc1b specifically results in defects in craniofacial development. Subsequent analysis revealed that hcfc1b regulates cranial neural crest cell differentiation and proliferation within the posterior pharyngeal arches. Further, the hcfc1b-mediated craniofacial abnormalities were rescued by expression of human MMACHC, a downstream target of HCFC1 that is aberrantly expressed in cblX. Furthermore, we tested distinct human HCFC1 mutations for their role in craniofacial development and demonstrated variable effects on MMACHC expression in humans and craniofacial development in zebrafish. Notably, several individuals with mutations in either HCFC1 or MMACHC have been reported to have mild to moderate facial dysmorphia. Thus, our data demonstrates that HCFC1 plays a role in craniofacial development, which is in part mediated through the regulation of MMACHC expression.


Assuntos
Proteínas de Transporte/fisiologia , Regulação da Expressão Gênica no Desenvolvimento , Fator C1 de Célula Hospedeira/fisiologia , Proteínas de Peixe-Zebra/fisiologia , Animais , Padronização Corporal/genética , Região Branquial/fisiologia , Proteínas de Transporte/genética , Diferenciação Celular , Movimento Celular , Condrócitos/citologia , Anormalidades Craniofaciais/genética , Técnicas de Silenciamento de Genes , Proteínas de Fluorescência Verde/metabolismo , Fator C1 de Célula Hospedeira/genética , Humanos , Camundongos Transgênicos , Mutação , Crista Neural/citologia , Crista Neural/fisiologia , Oxirredutases , Fenótipo , Células-Tronco/citologia , Vitamina B 12/metabolismo , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/genética
6.
Proc Natl Acad Sci U S A ; 109(43): 17430-5, 2012 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-23045687

RESUMO

Host-cell factor 1 (HCF-1) is an unusual transcriptional regulator that undergoes a process of proteolytic maturation to generate N- (HCF-1(N)) and C- (HCF-1(C)) terminal subunits noncovalently associated via self-association sequence elements. Here, we present the crystal structure of the self-association sequence 1 (SAS1) including the adjacent C-terminal HCF-1 nuclear localization signal (NLS). SAS1 elements from each of the HCF-1(N) and HCF-1(C) subunits form an interdigitated fibronectin type 3 (Fn3) tandem repeat structure. We show that the C-terminal NLS recruited by the interdigitated SAS1 structure is required for effective formation of a transcriptional regulatory complex: the herpes simplex virus VP16-induced complex. Thus, HCF-1(N)-HCF-1(C) association via an integrated Fn3 structure permits an NLS to facilitate formation of a transcriptional regulatory complex.


Assuntos
Regulação da Expressão Gênica , Fator C1 de Célula Hospedeira/fisiologia , Transcrição Gênica , Sequência de Aminoácidos , Cristalografia por Raios X , Fator C1 de Célula Hospedeira/química , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Sinais de Localização Nuclear , Sequências de Repetição em Tandem
7.
PLoS One ; 5(2): e9020, 2010 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-20126307

RESUMO

BACKGROUND: The human herpes simplex virus-associated host cell factor 1 (HCF-1) is a conserved human transcriptional co-regulator that links positive and negative histone modifying activities with sequence-specific DNA-binding transcription factors. It is synthesized as a 2035 amino acid precursor that is cleaved to generate an amino- (HCF-1(N)) terminal subunit, which promotes G1-to-S phase progression, and a carboxy- (HCF-1(C)) terminal subunit, which controls multiple aspects of cell division during M phase. The HCF-1(N) subunit contains a Kelch domain that tethers HCF-1 to sequence-specific DNA-binding transcription factors, and a poorly characterized so called "Basic" region (owing to a high ratio of basic vs. acidic amino acids) that is required for cell proliferation and has been shown to associate with the Sin3 histone deacetylase (HDAC) component. Here we studied the role of the Basic region in cell proliferation and G1-to-S phase transition assays. METHODOLOGY/PRINCIPAL FINDINGS: Surprisingly, much like the transcriptional activation domains of sequence-specific DNA-binding transcription factors, there is no unique sequence within the Basic region required for promoting cell proliferation or G1-to-S phase transition. Indeed, the ability to promote these activities is size dependent such that the shorter the Basic region segment the less activity observed. We find, however, that the Basic region requirements for promoting cell proliferation in a temperature-sensitive tsBN67 cell assay are more stringent than for G1-to-S phase progression in an HCF-1 siRNA-depletion HeLa-cell assay. Thus, either half of the Basic region alone can support G1-to-S phase progression but not cell proliferation effectively in these assays. Nevertheless, the Basic region displays considerable structural plasticity because each half is able to promote cell proliferation when duplicated in tandem. Consistent with a potential role in promoting cell-cycle progression, the Sin3a HDAC component can associate independently with either half of the Basic region fused to the HCF-1 Kelch domain. CONCLUSIONS/SIGNIFICANCE: While conserved, the HCF-1 Basic region displays striking structural flexibility for controlling cell proliferation.


Assuntos
Proliferação de Células , Fator C1 de Célula Hospedeira/fisiologia , Mutação , Animais , Sítios de Ligação/genética , Ciclo Celular/genética , Ciclo Celular/fisiologia , Linhagem Celular , Fase G1 , Deleção de Genes , Duplicação Gênica , Células HeLa , Fator C1 de Célula Hospedeira/genética , Fator C1 de Célula Hospedeira/metabolismo , Humanos , Imunoprecipitação , Ligação Proteica , Interferência de RNA , Fase S , Complexo Correpressor Histona Desacetilase e Sin3/metabolismo , Temperatura , Transfecção
8.
EMBO J ; 28(20): 3185-95, 2009 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-19763085

RESUMO

E2F1 is a key positive regulator of human cell proliferation and its activity is altered in essentially all human cancers. Deregulation of E2F1 leads to oncogenic DNA damage and anti-oncogenic apoptosis. The molecular mechanisms by which E2F1 mediates these two processes are poorly understood but are important for understanding cancer progression. During the G1-to-S phase transition, E2F1 associates through a short DHQY sequence with the cell-cycle regulator HCF-1 together with the mixed-lineage leukaemia (MLL) family of histone H3 lysine 4 (H3K4) methyltransferases. We show here that the DHQY HCF-1-binding sequence permits E2F1 to stimulate both DNA damage and apoptosis, and that HCF-1 and the MLL family of H3K4 methyltransferases have important functions in these processes. Thus, HCF-1 has a broader role in E2F1 function than appreciated earlier. Indeed, sequence changes in the E2F1 HCF-1-binding site can modulate both up and down the ability of E2F1 to induce apoptosis indicating that HCF-1 association with E2F1 is a regulator of E2F1-induced apoptosis.


Assuntos
Apoptose/fisiologia , Dano ao DNA/fisiologia , Fator de Transcrição E2F1/fisiologia , Fator C1 de Célula Hospedeira/metabolismo , Proteína de Leucina Linfoide-Mieloide/metabolismo , Sequência de Aminoácidos , Apoptose/genética , Sítios de Ligação , Linhagem Celular Tumoral , Imunoprecipitação da Cromatina , Dano ao DNA/genética , Fator de Transcrição E2F1/genética , Fator de Transcrição E2F1/metabolismo , Citometria de Fluxo , Imunofluorescência , Histona-Lisina N-Metiltransferase/genética , Histona-Lisina N-Metiltransferase/metabolismo , Histona-Lisina N-Metiltransferase/fisiologia , Fator C1 de Célula Hospedeira/química , Fator C1 de Célula Hospedeira/genética , Fator C1 de Célula Hospedeira/fisiologia , Humanos , Immunoblotting , Marcação In Situ das Extremidades Cortadas , Peptídeos e Proteínas de Sinalização Intracelular , Dados de Sequência Molecular , Proteína de Leucina Linfoide-Mieloide/genética , Proteína de Leucina Linfoide-Mieloide/fisiologia , Regiões Promotoras Genéticas/genética , Regiões Promotoras Genéticas/fisiologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Homologia de Sequência de Aminoácidos
9.
Proc Natl Acad Sci U S A ; 104(26): 10835-40, 2007 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-17578910

RESUMO

Originally identified as an essential component of the herpes simplex virus immediate early (IE) gene enhancer complex, the transcriptional coactivator host cell factor-1 (HCF-1) has been implicated in a broad range of cellular regulatory circuits. The protein mediates activation through multiple interactions with transcriptional activators, coactivators, and chromatin remodeling complexes. However, the mechanisms involved in HCF-1-dependent transcriptional stimulation were undefined. By using a minimal HCF-1-dependent promoter and a model activator, the varicella zoster IE62 protein, it was determined that HCF-1 was not required for the assembly of the RNAPII basal complex, which depended solely on IE62 in conjunction with the cellular factor Sp1. In contrast, HCF-1 was required for recruitment of the histone methyltransferases Set1 and MLL1 (mixed-lineage leukemia 1), leading to histone H3K4 trimethylation and transcriptional activation. Similarly, in a varicella zoster virus lytic infection, HCF-1, Set1, and MLL1 were recruited to the viral genomic IE promoter, suggesting an essential role for HCF-1 in chromatin modification and remodeling during initiation of lytic infection. The results indicate that one biological rationale for the incorporation of the viral IE activators in the viral particle is to recruit HCF-1/histone methyltransferase complexes and promote assembly of the viral IE gene promoters into transcriptionally active chromatin. These studies also contribute to the model whereby the induced nuclear transport of HCF-1 in sensory neurons may be critical to the reactivation of latent herpesviruses by promoting the activation of chromatin modifications.


Assuntos
Proteínas Cromossômicas não Histona/metabolismo , Herpes Simples/etiologia , Fator C1 de Célula Hospedeira/fisiologia , Proteína de Leucina Linfoide-Mieloide/metabolismo , Regiões Promotoras Genéticas , Simplexvirus/genética , Simplexvirus/patogenicidade , Fatores de Transcrição/metabolismo , Transporte Ativo do Núcleo Celular , Proteínas de Ligação a DNA , Regulação Viral da Expressão Gênica , Genes Precoces , Células HeLa , Chaperonas de Histonas , Histona-Lisina N-Metiltransferase , Histonas/metabolismo , Fator C1 de Célula Hospedeira/metabolismo , Humanos , Proteínas Imediatamente Precoces , Metilação , Transativadores , Ativação Transcricional , Proteínas do Envelope Viral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...